16 Angles Formed by Chords, Secants, and Tangents

I Inscribed Angles

D16-1 An **inscribed angle** is an angle whose vertex is on a circle and whose sides contain chords of the circle. The inscribed angle may intercept a minor arc, a major arc or a semicircle.

T16-1 The measure of an inscribed angle is equal to half the measure of its intercepted arc.

C16-1 If two inscribed angles intercept the same arc, then the angles are congruent.

C16-2 If a quadrilateral is inscribed in a circle, then its opposite angles are supplementary.

C16-3 An angle inscribed in a semicircle is a right angle.

T16-2 *Chord-Tangent Angle Theorem* The measure of an angle formed by a chord and a tangent is equal to half the measure of the intercepted arc.

Exercise I

1-6 Find *x*, *y*, *z*.

1.

2.

3.

4.

5.

6.

7. Prove: If two chords of a circle are parallel, the two arcs between the chords are congruent.

Given: $\overline{AB} \parallel \overline{CD}$.

Prove: $AC \cong BD$

8. Prove: $\Delta UXZ \sim \Delta YVZ$.

9. Find the measures of the numbered angles in a regular polygon with 7 sides.

10. Given: \overline{PT} is a tangent; $\overline{TU} \parallel \overline{PS}$. Find three similar triangles and prove them similar.

II Other Angles

T16-3 Chord-Chord Angle Theorem The measure of an angle formed by two chords that intersect inside a circle is equal to half the sum of the measures of the intercepted arcs.

T16-4 Secant-Secant, Secant-Tangent, Tangent-Tangent Angle Theorem The measure of an angle formed by two secants, two tangents, or a secant and a tangent drawn from a point outside a circle is equal to half the difference of the measures of the intercepted arcs.

Exercise II

1-9 Find the measure of each numbered angle.

2.

3.

4.

5.

6.

7.

8.

9.

10. \overrightarrow{BZ} is tangent to $\bigcirc O$; \overrightarrow{AC} is a diameter; mBC = 90; mCD = 30; mDE = 20.

Find the measure of each numbered angle.

11. (a) If mRT = 80 and mUS = 40, then $m\angle 1 = 80$

(b) If mRU = 130 and mTS = 100, then $m\angle 1 =$

(c) If $m\angle 1 = 50$ and mRT = 70, then mUS =_____.

(d) If $m\angle 1 = 52$ and mUS = 36, then mRT =_____.

12. \overline{PX} and \overline{PY} are tangents.

(c) If $m\angle P = 85$, then mXY =_____.

- 13. \overline{AT} is a tangent.
- (a) If mCT = 110 and mBT = 50, then $m\angle A =$ _____.
- (b) If $m\angle A = 40$ and mBT = 40, then mCT =_____.

- (c) If $m\angle A = 35$ and mCT = 110, then mBT =_____.
- **14.** A Quadrilateral circumscribed about a circle has angles of 80°,90°,94°, and 96°. Find the measures of the four nonoverlapping arcs determined by the points of tangency.

15. Write an equation involving a, b, and c.

16. Find the ratio of x: y.

